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International large-scale assessments (ILSA) –like e.g. PISA, TIMSS, PIRLS, etc.– have 

obtained a high worldwide popularity among researchers to study students’ academic 

achievement. Nevertheless, in spite of their recently acquired relevance, there are few studies 

which really account for the complex survey and test designs that they present and follow the 

technical procedures suggested by their developers. The current study intends to provide 

researchers with a comprehensive explanation on how these databases should be dealt with 

and the drawbacks of not employing the recommended procedures. Furthermore, we also 

alert about the use of methodologies which would not be adequate in the context of these 

studies, as the common use of student fixed effects. Hence, the main goal of this research is 

to provide some kind of ‘good practices guide’ which can be a quick reference to researchers.   
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International assessment programmes have received much attention over the last two decades, 

with academics, journalists and public policymakers all eagerly awaiting every set of updated 

results. Although the Programme for International Student Assessment (PISA) is perhaps the most 

well-known, a number of other studies fall into this group including the Trends in International 

Mathematics and Science Study (TIMSS), the Progress in International Reading Literacy Study 

(PIRLS) and the Programme for International Assessment of Adult Competencies (PIAAC). 

These data are also increasingly being used by social scientists to investigate the correlates and 

consequences of young people’s educational achievements. Given the widespread political and 

policy interest in studies such as PISA, such secondary analyses conducted by academics have 

the potential to generate hugely influential results. 

Yet many of the aforementioned international assessment programmes also have ambitious 

objectives. PISA, for instance, attempts to benchmark 15-year-olds’ achievement in three or four 

academic disciplines (e.g. reading, mathematics, science and collaborative problem-solving) 

across more than 70 countries.1 This is despite PISA being a relatively short (two hour) low-stakes 

test. The way the survey organisers try to achieve this goal, through a complex survey and test 

design, is poorly understood by many applied researchers who often fail to treat the data as the 

survey organisers intended.  

It is this misunderstanding of these data – particularly amongst economists – which has motivated 

the need for this paper. We appreciate this in how most studies using PISA  published within five 

influential economics journals – Economics of Education Review, Education Economics, 

Empirical Economics, Journal of Human Resources and The Economic Journal –have failed to 

mention (or properly account for) at least one aspect of the survey or test design – this analysis 

will be provided from authors upon request –. Our aim is to provide a non-technical description 

of the major international large-scale assessment programmes (e.g. PISA), to clearly articulate 

what their designs imply for secondary analyses of these data and to provide a case study 

investigating whether ignoring these features has a substantive impact upon one particularly 

interesting set of empirical results. 

In order to achieve these goals, we replicate a recent study published in The Economic Journal 

by Lavy (2015). This serves as a particularly interesting example, as fairly standard econometric 

approaches are applied to the PISA data, but with few adjustments made to account for the 

complex survey and test design. As noted above, we do not believe this to be unusual, with Lavy’s 

(2015) methodology having recently been implemented by others using PISA data within the 

economics of education field (e.g. Cattaneo, Oggenfuss and Wolter 2016). However, as we will 

argue, the special features of these data mean that the econometric identification strategies used 

                                                      
1 Particularly, in 2012, over half a million students participated, representing 28 million 15-year-olds in 65 

countries and economies and in 2015, the figure was raised to 72 countries.  
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by Lavy (2015) and Cattaneo, Oggenfuss and Wolter (2016) should probably not have been 

applied. In doing so, we hope to generate a better understanding of how international assessments 

such as PISA are designed and what this subsequently means for secondary analyses of these data.  

The paper now proceeds as follows. Section 2 provides a brief overview of Lavy (2015), which 

serves as our empirical case study. Section 3 then discusses the PISA survey design, including 

the purpose and use of the different sets of available weights. Section 4 follows with a description 

of the PISA test, and what this implies for the pupil fixed effects strategy employed by Lavy 

(2015) and Cattaneo, Oggenfuss and Wolter (2016). Conclusions then follow in section 5. 

2 An overview of Lavy (2015) 

Published in one of the leading economics journal (The Economic Journal), Lavy (2015) 

investigates whether spending more time learning a subject in school has a positive impact upon 

pupil’s academic performance. Using PISA 2006 data, the author examines how the results 

compare between a set of developed, developing and Eastern European countries, with the aim of 

getting as close to a causal effect as possible.  

The paper begins by presenting results from a set of basic OLS regression models, comparing 

how hours spent learning a subject per week in school is related to PISA test scores. These models 

are of the form: 

𝑃𝑖𝑗 = 𝛼 +  𝛽. 𝑋𝑖𝑗 +  𝛾. 𝐻𝑖𝑗 + 𝜀𝑖𝑗         ∇ 𝑘 

Where: 

𝑃𝑖𝑗 = PISA scores of pupil 𝑖 within school 𝑗. 

𝑋𝑖𝑗 = Basic set of pupils’ demographic characteristics. 

𝐻𝑖𝑗 = Hours spent by pupil 𝑖 learning a subject in school 𝑗 per week.  

𝜀𝑖𝑗  = The error term, with a Huber-White adjustment made to the estimated standard errors to take 

the clustering of pupils within schools into account.  

𝑖 = Pupil 𝑖. 

𝑗 = School 𝑗. 

∇ 𝑘 = Indicating that separate models are estimated for each of the three PISA subjects. 

Then, in a second set of models, the main identification strategy is employed. Pupil fixed effects 

are added, removing all the between-pupil variation.2 The focus of these models is therefore 

pupil’s relative performance across the different PISA subject areas. In other words, these pupil 

                                                      
2 The data are now set up so that there are three observations per pupil (one for each of the three PISA 

subjects: reading, mathematics and science). The pupil fixed effects model includes a dummy variable for 

each pupil in the dataset, stripping away all the between-pupil information, and leaving only the within-

pupil variation. 
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fixed effects models rely upon within-pupil variation only (e.g. how well pupil’s perform in 

science relative to reading and mathematics) and how this relates to the time they spend learning 

science versus mathematics in school. Specifically, they are of the form:  

𝑃𝑖𝑘 = 𝛼 +  𝛾. 𝐻𝑖𝑘 + 𝜇𝑖 + 𝜀𝑖𝑘 

Where: 

𝑃𝑖𝑗 = PISA scores of pupil 𝑖 within subject 𝑘. 

𝐻𝑖𝑘 = Hours spent by pupil 𝑖 learning subject 𝑘 in school per week. 

𝜇𝑖 = Pupil fixed effects. 

𝜀𝑖𝑘 = Random error for pupil 𝑖 within subject 𝑘. A Huber-White adjustment is then made to the 

estimated standard errors to take the clustering of children within schools into account. 

Both the OLS and pupil fixed effects models are estimated using large samples that have been 

pooled across several countries. This includes a sample of (a) 153,578 pupils from 22 OECD 

countries; (b) 59,005 pupils from 14 Eastern European countries and (c) 79,646 pupils from 13 

developing countries. 

Table 1 provides a summary of the key results. The OLS regression models suggest there is a 

substantial impact of study time upon pupils’ PISA scores, with effect sizes ranging between 

approximately 0.2 (developed countries) and 0.4 standard deviations (developing and Eastern 

European countries) per additional study hour. However, these are vastly reduced once the pupil 

fixed effects strategy has been employed, particularly in developing countries, where the impact 

of an additional hour is only just above zero (0.03 standard deviations). This leads to a headline 

conclusion that although instruction time has a positive and statistically significant impact upon 

pupils’ PISA academic achievement, the effect is much lower in the developing world.  

<< Table 1 >> 

Our decision to replicate this particular study is due purely to methodological considerations; we 

have little argument to make against the key substantive empirical results. Rather, the work of 

Lavy (2015) serves as an interesting case study as the empirical analysis largely ignores many of 

the subtle technical aspects of the PISA data; either wittingly or unwittingly, the paper does not 

follow the recommended practise in PISA data use. For instance, the final student and Balanced-

Repeated-Replication (BRR) weights we shall discuss in section 3 have not been applied, while 

the implications of the complex test design have not been explored. Yet, as noted in the 

introduction, this empirical approach to the PISA data is not uncommon in the literature – and has 

been used by others working in this area (e.g. Cattaneo, Oggenfuss and Wolter 2016). Lavy 

(2015), therefore, provides an opportunity for us to consider what the complex PISA survey and 

test design implies for different statistical approaches to the PISA data, and how an interesting set 

of empirical results are affected once these issues have been taken into account. 
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3 The PISA survey design  

PISA aims to draw a representative sample of in-school pupils in each country who are aged 

between 15 years and three months and 16 years and two months at the time of assessment. 

However, as with many school-based surveys, PISA is not a simple random sample from the 

population. Rather, a probabilistic, stratified and clustered survey design is used. In this section, 

we describe this design, and what it implies for analysis. 

To begin, each participating country is divided into a set of mutually-exclusive groups – known 

as explicit strata. These explicit strata vary across countries, but typically include region and 

school-type. For instance, within England, the population of schools is divided into four regions 

(e.g. North, South, Midlands, London) and three different school types (e.g. comprehensive, 

selective, independent) in PISA 2009 and 2012. Within each of these explicit strata, schools are 

then ranked by a variable (or set of variables) that are likely to be strongly associated with PISA 

scores. This is known as implicit stratification, with historic GCSE performance of the school the 

most important variable used for this purpose in England.3 Schools are then randomly selected, 

with probability proportional to size, from within each of these explicit strata. The OECD 

stipulates that a minimum of 150 schools from each country must participate.4 Finally, from 

within each school, a random sample of pupils (usually around 30) is drawn. 

Of course, as with any survey, the primary sampling unit (schools) may decline to participate. 

This has the potential to reduce the representativeness of the sample. PISA and other international 

surveys attempt to limit the impact of such non-response by allowing countries to approach 

‘replacement schools’ to take the place of non-participating schools in the study. Specifically, for 

each initially sampled school, two potential replacements are assigned. These are drawn from 

within the same explicit stratum as the non-participating school, and are chosen so that they are 

as similar as possible to the school they have replaced in terms of the implicit stratification 

variables used5. The intuition is that these replacement schools will be similar to the originally 

sampled but non-participating school in terms of the stratifying characteristics. The hope is that, 

through the use of these replacement schools, any bias due to non-response will be minimised.  

The use of replacement schools is not without controversy (Sturgis, Smith and Hughes 2006). 

Nevertheless, the PISA technical report (e.g. OECD 2009a for PISA 2006) provides full details 

on response rates before and after replacement schools have been considered. If these response 

rates fall below a given threshold, then a country may be excluded from the study. The OECD 

                                                      
3 School gender composition and local education authority area also play a role. 
4 In some very small countries such as Iceland, this effectively means that all schools take part. 
5 These replacement schools are “the schools immediately preceding and following it in the explicit stratum, 

which was ordered within by the implicit stratification”. 
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has shown this to not be an idle threat; this was the fate that met the Netherlands in 2000, England 

in 2003 and Malaysia in 2015. 

The final important feature of the PISA survey design is that some countries ‘oversample’ schools 

and/or pupils. This means that they recruit more schools and/or pupils to participate than is strictly 

required. These countries then have a much larger sample size; this is often done to facilitate 

comparisons within these countries at the state/provincial level. Consequently, in Canada, Spain, 

Italy and Mexico6, more than 20,000 pupils participated in PISA 2012 (compared to an 

international median of around 5,000 pupils). In other countries, pupils with certain demographic 

characteristics may be oversampled. Australia is a prime example, where all Indigenous pupils 

within selected schools are asked to participate, so that reliable estimates of achievement can be 

produced for this important minority group.  

This complex survey design of PISA, and other international large-scale assessments, has 

important implications for how the data are analysed by secondary users. We now discuss two 

particularly important issues: i) the use of sampling weights and ii) methods for adjusting the 

standard errors to account for how the sample was drawn. 

What is the purpose of the PISA respondent weights, and what are the implications of not applying 

these in cross-country analyses? 

In the official OECD reports, the PISA results are presented after applying a set a response 

weights. There are two possible ways to weight the data, known in the literature as: 

a) Final student (or sampling) weights. These scale the sample up to the size of the 

population within each country. The contribution of each country to a cross-national 

analysis (e.g. a cross-country regression model) therefore depends upon its population 

size (i.e. bigger countries carry more weight). 

b) Senate weights. These weights sum up to the same constant value within each country. 

Therefore, within a cross-country regression model, each country will contribute equally 

to the analysis (e.g. the results for Iceland will have the same impact upon estimates as 

results for the United States). 

One of these sets of weights should almost always be applied when analysing international 

educational achievement data. If the research question is about the population of pupils living 

within a specific group of countries (e.g. the population of pupils living within Eastern Europe) 

then the final sampling weights should be applied. Senate weights are, on the other hand, more 

appropriate when countries form the unit of analysis; if, for instance, one wants to know the 

average of a statistic across a set of countries (e.g. the mean PISA science score across the OECD).  

                                                      
6 For the whole set of countries, Canada represented a 4.5% of the total sample of students, 5.3% in the 

case of Spain, 6.5% for Italy and 7.0% for Mexico. 
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Details on the construction of these weights are available within the technical reports (e.g. OECD 

2014: chapter 8). In summary, they essentially serve four functions: 

 To account for the fact that schools are selected with probability proportional to size. 

 To account for the different population sizes in different countries (as noted above). 

 To adjust for the oversampling of schools/pupils in certain countries. 

 To provide some correction for any remaining non-response. 

If weights are not applied, then pupils/schools with particular characteristics may be either under 

or over represented within the analysis. This will, in turn, potentially lead to biased estimates. For 

instance, if weights are not applied when analysing the PISA data for Australia, Indigenous 

students will be overrepresented in the analysis and have an undue influence upon the results.7 

Indeed, it is only after applying these weights that point estimates (i.e. mean scores, regression 

coefficients) will be ‘correct,’ meaning that legitimate inferences can be made from the PISA 

sample about the population. 

One feature of Lavy (2015) is that no weights are applied in any part of the analysis. Therefore, 

by not applying these weights in his pooled cross-country regression models, the statistical 

contribution of each country to the analysis is essentially arbitrary. Rather than being based upon 

population size (as with the final student weights) or treating each country equally (as with senate 

weights) the contribution is based solely upon the size of the sample each country has decided to 

draw. Our interpretation is that, as Lavy was attempting to make statements about the population 

of 15-year-olds living within a set of developed/developing/Eastern European nations, the final 

student weights should have been applied. 

Table 2 drives this point home by illustrating the relative importance of each country to the Lavy 

analysis if (a) no weights; (b) final sampling weights; and (c) senate weights are applied.8 By not 

applying weights, too much importance has been given to some countries, while not enough has 

been given to others. Amongst developed countries, Canada serves as a good example. This is a 

country which drew a particularly large sample in 2006 – over 22,000 pupils – so that results 

could be reported separately by province. Consequently, Canada accounts for 12 per cent of 

Lavy’s developed country sample. However, when either the senate or student weights are 

applied, the contribution of Canada falls to around 5 per cent. Amongst developing countries, the 

figures for Mexico (another country that oversamples) are even more pronounced. Whereas this 

country drives around a third of Lavy’s developing country estimates, it should only account for 

around 14 per cent based upon its population size. Finally, for Eastern Europe, the opposite holds 

                                                      
7 This is due to the oversampling used in this country for this particular sub-group. 
8 Senate weights are simply a re-scaling of the final student weights. They are constructed so that the sum 

of the weights for each country equals the same constant (typically chosen to be 1,000). As Table 2 

illustrates, when senate weights are applied, each country contributes equally to the analysis. 
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true for Russia. Despite accounting for more than half of Eastern Europe’s 15-year-old population, 

by not applying the sampling weights, Russia’s contribution to Lavy’s analysis is less than 10 per 

cent. 

<< Table 2 >> 

What impact does this have upon the reported OLS regression coefficients?9 Table 3 reproduces 

Lavy’s results once either the final sampling weights (weighting each country by its population 

size) or senate weights (weighting the contribution of each country equally) have been applied. 

Depending upon the choice of weight, there are some non-trivial differences from the reported 

results. Comparing figures across the first two rows, the estimated effect of an additional hour of 

instruction within developed countries increases by almost 50 per cent, up from 0.196 standard 

deviations when applying no weights to 0.276 standard deviations when applying the final 

sampling weights; moreover, the standard error has doubled (up to 0.014 from 0.007). In contrast, 

the effect size has almost halved for Eastern Europe, declining from 0.382 to 0.230 standard 

deviations. The developing country estimates have also fallen, but the change is less pronounced 

(fall from 0.366 to 0.325). When using senate weights, the effect size is similar to that of Lavy’s, 

but with larger standard errors. Together, Table 3 highlights how important changes to parameter 

estimates and their standard errors can occur depending upon whether weights are applied within 

cross-country regressions or not. 

<< Table 3 >> 

What are the purpose of the PISA replication weights, and what are the implications of not 

applying these in cross-country analyses? 

Although the importance of accounting for multi-level structures is widely appreciated across the 

social sciences, either via estimation of multi-level models or via Huber-White adjustments to 

estimated standard errors, others issues (such as accounting for stratification or for the use of 

replacement schools) are less widely understood. Moreover, although some statistics packages 

such as R and Stata include commands to adjust standard errors for stratification, this requires 

information identifying the strata within the dataset.10 Unfortunately, for confidentiality reasons, 

this information is not typically available for all countries within international education databases 

such as PISA (e.g. information about strata are not available for China, Austria and Germany, 

amongst others, in PISA 2015). 

The way PISA and other international studies resolve this issue is by providing a series of 

‘replicate weights’. These are based upon a re-sampling methodology, and work in a similar way 

                                                      
9 We focus upon the OLS regression results here, as issues with the pupil fixed effects strategy will be 

covered in section 4 below.  
10 For instance, the ‘svyset’ Stata command includes the ‘strata’ option where this element of the survey 

design can be taken into account.  
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to jack-knife and bootstrapping techniques. It is only through the application of these weights that 

secondary analysts can fully account for all elements of the complex PISA survey design within 

every participating country, and thus replicate the ‘official’ figures reported by the OECD. 

Although the major international surveys use slightly different variants of these replication 

procedures, most can be handled within standard statistical software packages, including Stata 

and R.11 If these replication weights are ignored, then secondary analysts risk over or under 

estimating the amount of uncertainty (due to sampling error) in their results. 

To account for the clustered nature of the PISA data (i.e. pupils nested within schools) Lavy 

(2015) followed standard practise in the economics literature, and applied a Huber-White 

adjustment to the estimated standard errors (i.e. standard errors were ‘clustered’ at the school 

level). However, as noted above, such adjustments do not take into account some features of the 

PISA survey design, such as the use of stratification and the use of ‘replacement’ schools. To 

what extent would doing so, via application of the replicate weights (here BRR weights), make 

an appreciable difference to the reported results? 

<< Table 4 >> 

Table 4 provides the answer, with our particular focus upon rows 2 and 3. There is, as expected, 

no change to the point estimates; the issue we are dealing with here only affects the standard 

errors. However, even the standard errors are quite similar across rows 2 and 3. For instance, the 

standard error for the developed country estimates declines from 0.14 (when applying final 

student weights with a Huber-White adjustment) to 0.11 (when applying final student weights 

and the BRR weights). This more generally reflects our experience in using international 

achievement datasets such as PISA. Taking the clustering of pupils in schools into account is 

clearly important when estimating the standard error; however, whether one simply applies a 

Huber-White adjustment (as per Lavy) or follows the recommended replication-weight procedure 

typically has relatively little impact upon the key substantive results.  

4 The PISA test design  

PISA is not a standard test; rather it has a complex psychometric design. A key feature is the use 

of ‘multiple matrix sampling’ (MMS), with the intuition behind this as follows. International 

assessments such as PISA attempt to measure pupils’ skills in a number of different subject areas 

(reading, mathematics, science, problem solving, financial literacy) and within these a number of 

different sub-domains (e.g. ‘explaining phenomena scientifically’, ‘identifying scientific issues’ 

and ‘using scientific evidence’ in science). This results in a huge amount of test material to be 

                                                      
11 For instance, Stata includes the option ‘brrweight’ within the ‘svy’ command. Moreover, a number of 

user written commands to handle this feature of international databases now exist, including the excellent 

Stata and R packages of Avvisati and Keslair (2014) and Caro (2016). 
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covered – up to 10 hours per subject – making it impossible to ask every pupil each test question. 

Consequently, in order to keep the length of the PISA test manageable (e.g. to two hours), 

participants are randomly assigned to complete one particular test booklet, each of which includes 

only a limited number of test questions. 

Table 5 illustrates how this worked in practice in PISA 2006. In total, 108 science questions, 31 

reading questions and 48 mathematics questions were included in the assessment framework.12 

These questions were then divided into seven science, four mathematics and two reading clusters 

(a cluster refers to a collection of test questions), each covering 30 minutes of test material. These 

clusters are labelled S1-S7, M1-M4 and R1-R2, respectively, in Table 5. Out of these clusters, a 

total of 13 test booklets were formed (labelled B1-B13). Note that some of these booklets included 

only science questions (e.g. booklets 1 and 5), while others included questions in only science 

and reading (e.g. booklet 6) or only science and mathematics (e.g. booklets 3, 4, 8 and 10). Within 

each participating school, pupils were randomly assigned to one of these 13 booklets. 

<< Table 5 >> 

Based upon pupils’ responses to the test questions they were randomly assigned, the survey 

organisers fit a complex item-response theory (IRT) model to the data. This involves estimating 

a set of random-effects logistic regression models, where test questions are nested within 

participating students (with their answers – mostly binary coded as 1 for correct and 0 for incorrect 

– as the dependent variable). Based upon this model, the difficulty of each test question is 

established and ‘test scores’ (or, more appropriately, proficiency estimates) for participants are 

produced. Describing the technical details behind this process is beyond the scope of this paper, 

with interested readers directed to von Davier and Sinharay (2014:157 and 161) for further details.  

The result of this process is the creation of the international PISA database. This is published 

online, free for researchers to use from the OECD website.13 Within the international database 

what appears to be five separate test scores for each individual in each subject area can be found. 

To illustrate this point, an extract from this database is presented in Table 6, referring to a set of 

pupils who completed test booklet 1 in PISA 2006. 

< Table 6 > 

At this point, readers may be forgiven for suffering some confusion. Why are there five 

mathematics test scores for each pupil rather than just one? And why do pupils who have not 

answered any reading test questions seem to have a reading test score? (i.e. why do the pupils in 

Table 6 who all completed test booklet 1 – and therefore only answered science test questions – 

also have scores in reading and mathematics)? 

                                                      
12 One subject area is the focus in each cycle of PISA. In 2006, the focus was science, hence there were 

many more questions devoted to this subject than either reading or mathematics. 
13 See https://www.oecd.org/pisa/pisaproducts/ and http://www.oecd.org/pisa/data/  

https://www.oecd.org/pisa/pisaproducts/
http://www.oecd.org/pisa/data/
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The answer is that international assessments such as PISA rely heavily upon multiple imputation. 

The intuition is as follows. As illustrated in Table 5, pupils answer only a limited number of 

questions from the total test item pool. Those questions they do not answer can be thought of as 

a form of ‘missing data’ (or item non-response). However, as pupils have been randomly assigned 

to test booklets, and thus to test questions, the missing data for the questions they have not been 

asked to answer can be considered to be Missing Completely At Random (MCAR). Consequently, 

multiple imputation can be used to ‘fill-in’ the missing information. The argument is that under 

an MCAR assumption the use of multiple imputation will raise efficiency (i.e. reduce standard 

errors) but not have any direct effect upon the estimate of pupil’s proficiency scores.  

The key take away message is therefore that the five PISA ‘test scores’ (known in the 

psychometric literature as ‘plausible values’) are essentially multiple imputations based upon (a) 

pupils’ answers to the sub-set of test questions they were randomly assigned and (b) their 

responses to the background questionnaires. It is for this reason that the PISA database includes 

test scores (‘plausible values’) in reading even for pupils who did not actually answer any reading 

test questions. 

What are the implications of this for secondary analyses of the PISA data? 

How does one ‘correctly’ use these plausible values? The answer, according to the survey 

organisers, is that one should follow a version of ‘Rubin’s rules’ for handling multiple imputations 

(see OECD 2009a; Rubin 1987). This procedure can be divided into four steps: 

Step 1: Estimate the statistic/model of interest five times, once using each of the plausible values. 

This will generate five separate parameter estimates (𝛽𝑝𝑣) and five estimates of the sampling error 

(𝜎𝑝𝑣).14 

Step 2: To produce the final parameter and sampling error estimates, one simply takes the average 

of the five estimates produced in step 1: 

𝛽∗ =
∑ 𝛽𝑝𝑣

5
𝑝𝑣=1

𝑛𝑝𝑣
 

𝜎∗ =
∑ 𝜎𝑝𝑣

5
𝑝𝑣=1

𝑛𝑝𝑣
 

Where: 𝛽∗= Final estimate of the statistic / parameter of interest 

𝜎∗ = Final estimate of the sampling error 

𝑛𝑝𝑣 = The number of plausible values (typically five) 

Step 3: Estimate the magnitude of the imputation error, based upon the following formula: 

                                                      
14 Note that the BRR weights described in the previous section should also be applied each of the five times 

the model is estimated.  
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𝛿∗ =  
∑ (𝛽𝑝𝑣 − 𝛽∗)25

𝑝𝑣=1

𝑛𝑝𝑣 − 1
 

Where:  

𝛿∗ = The magnitude of the imputation error. 

Step 4: Calculate the value of the final standard error by combining the sampling error (𝜎∗) and 

the imputation error (𝛿∗) via the following formula: 

Standard error = √𝜎∗
2 + (1 +

1

𝑃𝑉
) . 𝛿∗

2 

One can then use the final parameter estimate (𝛽∗) and its standard error to conduct hypothesis 

tests and construct confidence intervals following the usual methods.  

Rather than following the steps outlined above, Lavy only uses the first imputed value throughout 

his analysis. Does this make a difference to his results? One can find the answer by returning to 

the bottom two rows of Table 4. The impact appears to be minimal, with only trivial changes to 

the estimated effect sizes and associated standard errors. Whether one uses just one plausible 

value, or follows recommended practise in using all five, has no substantive impact upon the 

results. 

Although it can be dangerous to draw strong conclusions from a single analysis, this result again 

reflects our experience more broadly of using international achievement databases (and the PISA 

data in particular). Whether one uses just a single plausible value or closely follows the 

recommended procedure typically has a trivial impact upon substantive results. Indeed, the survey 

organisers themselves recognise that the use of a single plausible value actually provides both 

unbiased point and sampling variance estimates, stating how ‘using one plausible value or five 

plausible values does not really make a substantial difference on large samples’ (OECD 

2009b:46). The only aspect that using a single plausible misses is the ‘imputation error’ – 

uncertainty that should be added to the standard error to reflect the fact that multiple imputation 

is used to generate the science, reading and mathematics proficiency scores. Yet, in practise, this 

additional imputation error is almost always of negligible magnitude (as per the Lavy example), 

with key conclusions continuing to hold if it is simply ignored. 

However, the fact that PISA scores are essentially imputations does raise other concerns regarding 

how these data should and should not be used. This includes the application of some fairly 

standard econometric procedures, such as the use of pupil fixed effects. To see why, recall the 

PISA 2006 test design presented in Table 5, and how pupils are randomly allocated to one of these 

13 booklets. Moreover some pupils, like those assigned booklet 1, answer science test questions 

only, and none in reading or mathematics. 
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Now recall what a pupil fixed effects methodology is trying to achieve. It strips away all the 

between-pupil differences, so that only within-pupil variation in achievement is left to explain. 

For example, in Lavy (2015), the pupil fixed effects models essentially compare each pupil’s own 

performance in science relative to their performance in reading and mathematics, relating this to 

the relative amount of time he/she spends attending classes in each subject per week. However, 

as noted above, pupils’ ‘test scores’ (plausible values) are imputed, based upon how they 

answered a small number of test questions (sometimes just within a single subject area – e.g. just 

science questions in the case of pupils assigned booklet 1) and the information they provided in 

the background questionnaire.15 In such a situation, any within-pupil variation in performance 

that exists across subjects is largely generated by the imputation procedure. Indeed, conceptually, 

it is impossible to accurately capture within-pupil variation in performance across different 

academic domains (e.g. relative performance in science compared to reading and mathematics), 

when many pupils have actually only answered questions in a single subject area (e.g. science). 

This leads to a much more general point about international large-scale assessment data such as 

PISA. These tests have been designed to provide summary statistics about the population of 

interest within each country (OECD 2009a:156), and about simple correlations between key 

variables (e.g. between socio-economic status and pupil performance), but ‘plausible values 

contain random error variance components and are not optimal as scores for individuals’ (OECD 

2009a:156). In this sense, the psychometricians behind these tests warn how ‘reliable individual 

proficiency estimates cannot be obtained’ (Oranje and Ye 2014:204), that they ‘are not intended 

to produce and disseminate individual results at the respondent or even the classroom or school 

level’ (Oranje and Ye 2014:204) and that they ‘lack accuracy on the individual test-taker’ (von 

Davier and Sinharay 2014:156). In other words, measurement error is so large at the individual 

level that test scores for individual pupils are unreliable. Consequently, even for those pupils who 

have actually taken test questions in all three of the PISA subjects (e.g. those allocated to booklet 

13 in PISA 2006 – recall Table 5) the use of pupil fixed effects models is not advised. 

Are there any wider implications of such test designs? 

There are other methodological implications of such test designs beyond those we have discussed 

in relation to Lavy (2015). Although we are unable to cover all of these within this paper, we will 

highlight one important issue, related to the increasingly common practise of tracking PISA 

cohorts over time. This has been done in a number of countries by either re-surveying 

participating pupils at a later date (as is the case in Australia, Canada, Denmark and Switzerland16) 

                                                      
15 The information captured in the background questionnaires include demographic data and pupils’ 

attitudes. 
16 See, for instance, http://www.lsay.edu.au/lsay-data/scope for Australia, 

http://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&SDDS=4435 for Canada and 

http://www.lsay.edu.au/lsay-data/scope
http://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&SDDS=4435
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or by linking PISA to administrative data (as is the case in England). A major focus of research 

based upon these studies is to how performance in PISA correlates with other test score measures 

(e.g. GCSE grades in England) and outcomes in later life (e.g. access to university, labour market 

earnings). 

If PISA had a ‘standard’ test design, this would not be an issue. However, the fact that PISA uses 

multiple imputation to generate the plausible values again potentially causes problems. This is 

because, within the multiple imputation literature, it is widely considered best practise to have a 

‘congenial’ imputation model (Carpenter and Kenward 2013:70). This means that all variables 

included in the final substantive analysis should be included in the imputation model. If this is 

not the case, then estimated relationships between the imputed variable(s) and the variables not 

included in the imputation model will be biased (von Davier 2014). As the PISA plausible values 

are essentially multiple imputations, the same rules apply here as well. However, ‘congenial’ 

imputation models cannot currently be used for secondary analysis involving longitudinal follow-

ups of the PISA data, since the models used to create PISA plausible values are not made publicly 

available. What this then implies is that any comparison made between PISA scores and national 

examination data (e.g. GCSE grades in England) or with young people’s later lifetime outcomes 

(e.g. whether they enter university, their pay) are likely to suffer biases of unknown direction and 

magnitude.17  

We believe this final fact highlights perhaps the critical point we have tried to make throughout 

this paper: the peculiar nature of PISA’s survey and test design adds many additional 

complications to secondary analyses of these data. Some of these complications may be discussed 

by the survey organisers, and understood by some analysts, but others are not. Much more work 

is therefore needed to bring clarity and transparency to how these datasets are constructed, what 

this implies for how they should and should not be used, and the potential bias that could be 

introduced into secondary results.  

5 Conclusions 

International studies of educational achievement are becoming increasingly high-profile 

resources, with secondary analyses of these data having the potential to influence education policy 

and practise across the world. Yet the complex survey and test designs used remain poorly 

                                                      
http://forscenter.ch/en/data-and-research-information-services/2221-2/special-projects/tree/ for 

Switzerland.  
17 It has been suggested that the correlation between the imputed variable (e.g. PISA plausible values) and 

the variable(s) not included in the imputation model (e.g. future examination grades, university entry, future 

earnings) will typically be downward biased. However, we know of no research investigating this issue 

with respect to international large scale assessment test designs. Likewise, we believe the direction of the 

bias will be increasingly difficult to know when one moves beyond simple bivariate associations between 

the linked data and imputed plausible values. 

http://forscenter.ch/en/data-and-research-information-services/2221-2/special-projects/tree/
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understood by many consumers of these data. This not only includes politicians, policymakers 

and the general public who digest the results, but also by academics who analyse the data to 

produce secondary research. Resources such as PISA are consequently often being analysed in a 

manner not intended by the survey organisers, potentially leading to erroneous conclusions and 

biased results. The aim of this paper has therefore been to foster a better understanding of the 

complex features of international large-scale assessments, particularly amongst economists, who 

now frequently use these resources in their work. 

Using Lavy (2015) as a case study, we have provided an overview of the survey methodology 

underpinning studies such as PISA, highlighting the importance of applying the survey weights 

when conducting cross-country analyses using pooled international samples. Likewise, several 

unusual features of the PISA test design have been explored, including the use of multiple matrix 

sampling and the resulting imputations of pupils’ proficiency scores (‘plausible values’). In doing 

so, we have highlighted how some fairly standard econometric approaches (such as the use of 

pupil fixed effects) should not be applied to these data, and that the statistical techniques required 

to robustly analyse these resources are perhaps more complicated than first meets the eye.  

What do these findings then imply for the users, producers and consumers of these data? We offer 

two suggestions. First, more clarity and greater transparency is needed from the survey organisers 

about the test design, and exactly how the proficiency values (i.e. the ‘PISA scores’) are produced. 

Indeed, the imputation models used to generate the so-called plausible values remain a black-box. 

Most people (including many highly-skilled academics) do not understand the fact that PISA 

scores are actually imputations and, consequently, what statistical methodologies are and are not 

appropriate to apply. Although some of the relevant details are available in the depths of the 

technical reports, we believe a more open, transparent and widespread discussion of the 

methodologies underpinning these studies would be hugely beneficial. This, we believe, is key to 

getting a broader cross-section of researchers to understand what these data can and cannot reveal, 

and how much faith should be placed upon the results. Our suggestion is that the code to reproduce 

the imputation models, allowing independent researchers to see how the plausible values are 

derived from the underlying data, represents a first critical step in this direction.  

Second, at the same time, it is also the responsibility of users of these resources to develop a better 

understanding of the properties of the data. Various technical reports and user guides now exist, 

with many of the key details included within (e.g. OECD 2009b). Applied researchers should also 

take more advantage of the many excellent software plugins for analysing these datasets now 

available for standard statistical packages such as R and Stata (Avvisati and Keslair 2014; Caro 

2016), which greatly reduce the computational burden. Moreover, despite the limitations and 

complications we have highlighted with these data, we continue to believe they are a useful and 

valuable source of secondary data. 
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In highlighting these points, we hope to have improved the transparency of the methodology 

behind international large-scale education achievement surveys, the care that needs to be taken 

when analysing these data and the caveats that are required when interpreting the results. 

Although we continue to see the value in international studies of educational achievement such 

as PISA, and their potential to influence education policy for the better, we also feel that far more 

scrutiny needs to be given to the unusual features of their design. This, we believe, will only help 

people to better understand what can and cannot be done with the data, and for more nuanced 

interpretations to be placed upon the PISA results.  
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Table 1. An overview of key results from Lavy (2015). 

  OLS Pupil fixed effects 

  Effect size SE Effect size SE 

OECD sample 0.196* 0.007 0.058* 0.004 

Developing country sample 0.366* 0.012 0.030* 0.008 

Eastern European sample 0.382* 0.013 0.061* 0.006 

Notes: Source is Lavy (2015) Table 3 and Table 8. Results refer to the estimated impact of a one 

hour increase in instructional time upon pupils’ PISA test scores, reported as an effect size. * 

indicates significantly different from zero at the one per cent level. 
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Table 2. The role of weights in determining countries’ importance in pooled cross-country analyses. 

(a) Developed countries  (b) Developing countries  (c) Eastern European countries 

  
No 

weight 

Senate 

weight 

Student 

weight 

 

  
No 

weight 

Senate 

weight 

Student 

weight 

 

  
No 

weight 

Senate 

weight 

Student 

weight 

Canada 12% 5% 6%  Mexico 30% 8% 14%  Slovenia 9% 7% 1% 

Italy 12% 5% 9%  Indonesia 10% 8% 27%  Czech Republic 8% 7% 4% 

Spain 11% 
5% 

6% 
 

Brazil 9% 
8% 

22% 
 Russian 

Federation 
8% 

7% 
57% 

Australia 8% 5% 4%  Jordan 6% 8% 1%  Poland 8% 7% 16% 

UK 7% 5% 12%  Thailand 6% 8% 8%  Croatia 7% 7% 1% 

Switzerland 7% 5% 1%  Kyrgyzstan 6% 8% 1%  Romania 7% 7% 7% 

Belgium 5% 5% 2%  Chile 5% 8% 3%  Estonia 7% 7% 1% 

Japan 3% 5% 18%  Azerbaijan 5% 8% 1%  Serbia 7% 7% 2% 

Portugal 3% 5% 1%  Turkey 5% 8% 8%  Lithuania 7% 7% 2% 

Austria 3% 5% 1%  Uruguay 5% 8% 0%  Slovak Republic 7% 7% 2% 

Germany 3% 5% 15%  Tunisia 5% 8% 2%  Latvia 7% 7% 1% 

Greece 3% 5% 2%  Columbia 4% 8% 6%  Bulgaria 6% 7% 2% 

Netherlands 3% 5% 3%  Argentina 4% 8% 6%  Hungary 6% 7% 3% 

New Zealand 3% 5% 1%  Total 100% 100% 100%  Montenegro 6% 7% 0% 

Finland 3% 5% 1%       Total 100% 100% 100% 

France 3% 5% 12%           

Norway 3% 5% 1%           

Ireland 2% 5% 1%           

Luxembourg 2% 5% 0%           

Denmark 2% 5% 1%           

Sweden 2% 5% 2%           

Iceland 2% 5% 0%           

Total 100% 100% 100%           
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Table 3. Changes to Lavy’s OLS estimates when the PISA weights are applied. 

  OECD Developing  Eastern Europe 

  Effect size SE Effect size SE Effect size SE 

No weights 

(Lavy 2015) 0.196* 0.007 0.366* 0.012 0.382* 0.013 

Final student 

weights 0.276* (+41%) 0.014 0.325* (-11%) 0.019 0.230* (-40%) 0.014 

Senate 

weights 0.188* (-4%) 0.010 0.340* (-7%) 0.018 0.362* (-5%) 0.015 

Notes: ‘Final student weights’ equivalent to weighting by the population size of the country, while ‘senate weights’ 

give equal weights to all countries, regardless of size. * indicates significantly different from zero at the one per cent 

level. 

Table 4. Changes to Lavy’s OLS estimates if weights and plausible values are applied. 

  Developed Developing  Eastern Europe 

  Effect size SE Effect size SE Effect size SE 

Lavy (2015) 0.196* 0.007 0.366* 0.012 0.382* 0.013 

+ final student weights 0.276* 0.014 0.325* 0.019 0.230* 0.014 

+ BRR weights 0.276* 0.011 0.325* 0.016 0.230* 0.016 

+ plausible values 0.277* 0.012 0.327* 0.017 0.230* 0.016 

Notes: Top row refers to the results presented by Lavy (2015) where no weights are applied, a 

Huber-White adjustment has been made to the estimated standard errors and only the first plausible 

value is used. Results in the second row replicate the Lavy analysis, but now applying the final 

student weights. The third row uses the BRR weights to account for the complex PISA survey 

design, rather than making a Huber-White adjustment. In the final row, all five plausible values 

have been used, following recommended practise by the OECD. 

* indicates significantly different from zero at the one per cent level. 

Table 5. The PISA 2006 test design. 

Booklet Clusters 

1 S1 S2 S4 S7 

2 S2 S3 M3 R1 

3 S3 S4 M4 M1 

4 S4 M3 S5 M2 

5 S5 S6 S7 S3 

6 S6 R2 R1 S4 

7 S7 R1 M2 M4 

8 M1 M2 S2 S6 

9 M2 S1 S3 R2 

10 M3 M4 S6 S1 

11 M4 S5 R2 S2 

12 R1 M1 S1 S5 

13 R2 S7 M1 M3 
Notes: OECD (2009a:29) PISA 2006 technical report. S1 to S7 

refers to the seven science clusters (white shading), M1 to M4 the 

four mathematics clusters (light grey shading) and R1 to R2 the two 

reading clusters (dark grey shading).  
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Table 6. An extract illustrating the ‘plausible values’ within the PISA database. 

   Reading Mathematics Science 

Country School id Student id PV1 PV2 PV3 PV4 PV5 PV1 PV2 PV3 PV4 PV5 PV1 PV2 PV3 PV4 PV5 

Argentina 1 10 410 329 394 348 371 349 309 359 394 389 330 279 326 310 362 

Australia 1 4 444 448 439 490 448 454 477 460 489 513 483 473 472 456 526 

Austria 1 26 604 668 664 664 669 623 729 697 697 655 647 705 692 692 699 

Azerbaijan 1 2 455 520 370 445 436 535 540 526 514 521 509 541 491 514 486 

Belgium 1 13 427 380 386 363 351 448 366 456 458 451 434 379 416 434 420 

Bulgaria 2 5 572 572 484 460 484 408 408 403 491 403 433 433 374 417 374 

Brazil 2 12 386 372 325 342 299 324 337 358 357 341 370 379 377 333 352 

Canada 1 5 492 478 469 535 551 489 486 520 506 573 473 477 485 484 499 

Switzerland 1 6 442 501 469 408 448 478 439 453 432 475 471 508 473 456 515 

Chile 1 3 591 613 498 613 478 454 475 457 475 434 554 553 533 553 548 

Notes: Extract from the PISA (2006) database. ‘PV’ stands for plausible value.  


